23.【阅读探究】如图1,已知AB∥CD,E、F分别是AB、CD上的点,点M在AB、CD两平行线之间,∠AEM=45°,∠CFM=25°,求∠EMF的度数.
解:过点M作MN∥AB
∵AB∥CD
∴MN∥CD
∴∠EMN=∠AEM=45°
∠FMN=∠CFM=25°
∴∠EMF=∠EMN+∠FMN
=45°+25°=70°
从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将么∠AEM和∠CFM“凑”在一起,得出角之间的关系,使问题得以解决.
【方法运用】如图2,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.
(1)由图2写出∠AOP、∠BQP、∠OPQ之间的数量关系,并说明理由.
(2)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…直接写出∠OPQ和∠ORQ的数量关系.
【应用拓展】
问题情境:“公路村村通”的政策让公路修到了山里,蜿蜒的盘山公路连接了山里与外面的世界.数学活动课上,老师把山路抽象成图4所示的样子,并提出了一个问题:
(3)在图4中,AB∥CD,∠B=125°,∠PQC=65°,∠C=145°,求∠BPQ的度数.