22.阅读下列材料,解决相应问题:
“友好数对”已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“友好数对”.例如43×68=34×86=2924,所以43和68与34和86都是“友好数对”. |
(1)36和84
“友好数对”.(填“是”或“不是”)
(2)为探究“友好数对”的本质,可设“友好数对”中一个数的十位数字为a,个位数字为b,且a≠b;另一个数的十位数字为c,个位数字为d,且c≠d,则a、b、c、d之间存在一个等量关系,其探究和说理过程如下,请你将其补充完整.
解:根据题意,“友好数对”中的两个数分别表示为10a+b和10c+d,将它们各自的十位数字和个位数字交换位置后两个数依次表示为
和
.
因为它们是友好数对,所以(10a+b)(10c+d)=
.
即a、b、c、d的等量关系为:
.
(3)请从下面A、B两题中任选一题作答,我选择
题.
A.请再写出一对“友好数对”,与本题已给的“友好数对”不同.
B.若有一个两位数,十位数字为x+2,个位数字为x,另一个两位数,十位数字为x+2,个位数字为x+8.且这两个数为“友好数对”,直接写出这两个两位数.