24.【模型建立】如图1,等腰直角三角形ABC中∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,易证明△BEC≌△CDA(无需证明),我们将这个模型称为“K形图”.接下来我们就利用这个模型来解决一些问题:
【模型运用】(1)如图2,在平面直角坐标系中,等腰
Rt△ACB,∠ACB=90°,AC=BC,AB与y轴交点D,点C的坐标为(0,-2),A点的坐标为(4,0),求B,D两点坐标;
(2)如图3,在平面直角坐标系中,直线l函数关系式为:y=4x+4,它交y轴于点A,交x轴于点C,在x轴上是否存在点B,使直线AB与直线l的夹角为45°?若存在,求出点B的坐标;若不存在,请说明理由.
【模型拓展】(3)如图4,在
Rt△ABC中,∠C=90°,AC=6,BC=8,点D在AC上,点E在BC上,CD=2,分别连接BD,AE交于F点.若∠BFE=45°,请直接写出CE的长.