23.【背景介绍】勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.
(1)【小试牛刀】把两个全等的直角三角形如图1放置,其三边长分别为a,b,c.显然,∠DAB=∠B=90°,AC⊥DE.请用a,b,c分别表示出梯形ABCD,四边形AECD,△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:S
梯形ABCD=
,S
△EBC=
,S
四边形AECD=
,则它们满足的关系式为
,经化简,可得到勾股定理.
(2)【知识运用】如图2,河道上A,B两点(看作直线上的两点)相距160米,C,D为两个菜园(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A,B,AD=70米,BC=50米,现在菜农要在AB上确定一个抽水点P,使得抽水点P到两个菜园C,D的距离和最短,则该最短距离为
米.
(3)【知识迁移】借助上面的思考过程,求代数式
√x2+9
+
√(12-x)2+36
的最小值(0<x<12).