25.如图1,在平面直角坐标系中,点A的坐标是(0,-2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于
AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为
,其理由为:
.
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
M的坐标 | … | (-2,0) | (0,0) | (2,0) | (4,0) | … |
P的坐标 | … | | (0,-1) | (2,-2) | | … |
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是
.
验证:
(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点B(-1,
√3
),C(1,
√3
),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标y
D的取值范围.