首页 > 初中试卷 > 九年级试卷 > 九年级数学试卷 > 2021年九年级数学试卷 > 2021年四川九年级数学试卷 > 2021年四川攀枝花市九年级数学试卷 > 2021年四川攀枝花市数学中考模拟试卷

2021年四川省攀枝花市西区中考数学一模模拟试卷

试卷格式:2021年四川省攀枝花市西区中考数学一模模拟试卷.PDF
试卷热词:最新试卷、2021年、四川试卷、攀枝花市试卷、数学试卷、九年级试卷、中考模拟试卷、初中试卷
如何查看答案以及解析
下载试卷后,用微信扫一扫扫描试卷右上角二维码即可查看【2021年四川省攀枝花市西区中考数学一模模拟试卷】解析和视频讲解。
试卷题目
1.下列实数:15,
22
7
,3
2
,-3π,0.10101中,无理数有(  )个.
  • A. 1
  • B. 2
  • C. 3
  • D. 4
2.下列运算不正确的是(  )
  • A. a2•a3=a5
  • B. (y3)4=y12
  • C. (-2x)3=-8x3
  • D. x3+x3=2x6
3.下列手机手势解锁图案中,是中心对称图形的是(  )
  • A.
  • B.
  • C.
  • D.
4.永宁县某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是(  )
日期 星期一 星期二 星期三 星期四 星期五 星期六 星期天 
体温(℃) 36.2 36.2 36.5 36.3 36.2 36.4 36.3 

  • A. 36.3和36.2
  • B. 36.2和36.3
  • C. 36.2和36.2
  • D. 36.2和36.1
5.人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为(  )
  • A. 10×10-10
  • B. 1×10-9
  • C. 0.1×10-8
  • D. 1×109
6.若x1,x2是方程x2-4x-2020=0的两个实数根,则代数式x12-2x1+2x2的值等于(  )
  • A. 2020
  • B. 2019
  • C. 2029
  • D. 2028
7.下列识别图形不正确的是(  )
  • A. 有一个角是直角的平行四边形是矩形
  • B. 有三个角是直角的四边形是矩形
  • C. 对角线相等的四边形是矩形
  • D. 对角线互相平分且相等的四边形是矩形
8.如图,在半径为5的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=8,垂足为E.则tan∠OEA的值是(  )
  • A. 1
  • B.
    6
    3
  • C.
    15
    6
  • D.
    2
    15
    9

9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有(  )个.
①abc>0;
②2a+b=0;
③9a+3b+c<0;
④4ac-b2<0;
⑤a+b≥m(am+b)(m为任意实数).

  • A. 3
  • B. 2
  • C. 1
  • D. 0
10.如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G,当
FH
HG
=
1
4
时,DE的长为(  )

  • A. 2
  • B.
    12
    5
  • C.
    18
    5
  • D. 4
11.分解因式:m2n-4n=      
12.若二次根式
2a+6
与-3
3
是同类二次根式,则整数a可以等于      .(写出一个即可)
13.有五张正面分别写有数字-4,-3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n,则抽取的n既能使关于x的方程(n+3)x2+(n+1)x+
1
2
=0有实数根,又能使以x为自变量的反比例函数y=
n2-16
x
的图象在每个象限内y随x的增大而增大的概率为    
14.若关于x的分式方程
x
x-3
+
3a
3-x
=2a无解,则a的值为    
15.如图,已知圆O中,R=5,四边形ABCD,EFGH均为正方形,∠BOD=45°,点A,H在⊙O上,O,G,D三点共线,则小正方形EFGH的边长=      

16.如图,点A(6,0),B(0,2),点P在直线y=-x-1上,且∠ABP=45°,则点P的坐标为       

17.先化简,再求值:
x2-2x-3
x-2
÷(x+2-
5
x-2
),其中x=
1
2

18.在等腰△OAB和等腰△OCD中,OA=OB,OC=OD,连接AC、BD交于点M.
(1)如图1,若∠AOB=∠COD=40°:
①AC与BD的数量关系为       
②∠AMB的度数为       
(2)如图2,若∠AOB=∠COD=90°:
①判断AC与BD之间存在怎样的数量关系?并说明理由;
②求∠AMB的度数;
(3)在(2)的条件下,当∠CAB=30°,且点C与点M重合时,请直接写出OD与OA之间存在的数量关系.

19.九年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练.现将项目选择情况作统计图.请你根据上面提供的信息回答下列问题:
(1)若选择篮球的人数为20人,则该班共有学生      人.
(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树状图的方法求恰好选中两名男生的概率.

20.小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB与底板的边缘线OA所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B、O、C在同一直线上,OA=OB=24cm,BC⊥AC,∠OAC=30°.

(1)求OC的长;
(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120°,求点B′到AC的距离.(结果保留根号)
21.如图,直线y=
3
x+
3
与双曲线y=
2
3
x
(x>0)的交点为A,与x轴的交点为B.
(1)求∠ABO的度数;
(2)求AB的长;
(3)已知点C为双曲线y=
2
3
x
(x>0)上的一点,当∠AOC=60°时,求点C的坐标.

22.如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E.
(1)证明:ED是⊙O的切线;
(2)若⊙O半径为3,CE=2,求BC的长.

23.如图,在矩形ABCD中,E为AD上的点,连接EC,AB=m,BC=n,m>
n
2

(1)若m=3,n=4,连接AC,CE平分∠ACD,求DE的长;
(2)若E为AD中点,过点E作EF⊥EC交AB于F点,连接FC,
①补全图形并证明:EF平分∠AFC;
②当△AEF与△BFC相似时,求
m
n
的值.

24.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(-1,0)、(0,-3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看全部题目
【2021年四川省攀枝花市西区中考数学一模模拟试卷】标签
中考模拟试卷 最新试卷 四川试卷 攀枝花市试卷 2021年试卷 初中试卷 九年级试卷 数学试卷
1 2 3 4 5 6 7
下载高清试卷