23.定义:我们把两条对角线互相垂直的四边形称为“垂美四边形”.
(1)特例感知:如图1,四边形ABCD是“垂美四边形”,如果OA=OD=
OB,OB=2,∠OBC=60°,则AD
2+BC
2=
,AB
2+CD
2=
.
(2)猜想论证:如图1,如果四边形ABCD是“垂美四边形”,猜想它的两组对边AB,CD与BC,AD之间的数量关系并给予证明.
(3)拓展应用:如图2,分别以
Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,∠BAC=60°,求GE长.