首页 > 初中试卷 > 九年级试卷 > 九年级数学试卷 > 2019年九年级数学试卷 > 2019年山东九年级数学试卷 > 2019年山东青岛市九年级数学试卷 > 2019年山东青岛市数学中考试卷

【2019年山东省青岛市中考数学试卷】-第7页

试卷格式:2019年山东省青岛市中考数学试卷.PDF
试卷热词:最新试卷、2019年、山东试卷、青岛市试卷、数学试卷、九年级试卷、中考试卷、初中试卷
如何查看答案以及解析
下载试卷后,用微信扫一扫扫描试卷右上角二维码即可查看【2019年山东省青岛市中考数学试卷】解析和视频讲解。
试卷题目
1.-
3
的相反数是(  )
  • A. -
    3
  • B. -
    3
    3
  • C. ±
    3
  • D.
    3
2.下列四个图形中,既是轴对称图形,又是中心对称图形的是(  )
  • A.
  • B.
  • C.
  • D.
3.2019年1月3日,我国"嫦娥四号"月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为(  )
  • A. 38.4×104km
  • B. 3.84×105km
  • C. 0.384×10 6km
  • D. 3.84×106km
4.计算(-2m)2•(-m•m2+3m3)的结果是(  )
  • A. 8m5
  • B. -8m5
  • C. 8m6
  • D. -4m4+12m5
5.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则CD的长度为(  )
  • A. π
  • B. 2π
  • C. 2
    2
    π
  • D. 4π
6.如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是(  )
  • A. (-4,1)
  • B. (-1,2)
  • C. (4,-1)
  • D. (1,-2)
7.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为(  )
  • A. 35°
  • B. 40°
  • C. 45°
  • D. 50°
8.已知反比例函数y=
ab
x
的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是(  )
  • A.
  • B.
  • C.
  • D.
9.计算:
24
+
8
2
-(
3
)0=      
10.若关于x的一元二次方程2x2-x+m=0有两个相等的实数根,则m的值为    
11.射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是      环.
12.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是      °.
13.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为      cm
14.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走      个小立方块.
15.请用直尺、圆规作图,不写作法,但要保留作图痕迹.
已知:∠α,直线l及l上两点A,B.
求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.
16.计算:(1)化简:
m−n
m
÷(
m2+n2
m
-2n)
(2)解不等式组
{
1-
1
5
x≤
6
5
3x-1<8
,并写出它的正整数解.
17.小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.
18.为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:
9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
在对这些数据整理后,绘制了如下的统计图表:
睡眠时间分组统计表睡眠时间分布情况
组别 睡眠时间分组 人数(频数) 
7≤t<8 
8≤t<9 11 
9≤t<10 
10≤t<11 

请根据以上信息,解答下列问题:
(1)m=      ,n=      ,a=      ,b=      
(2)抽取的这40名学生平均每天睡眠时间的中位数落在      组(填组别);
(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.
19.如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).
(参考数据:sin32°≈
17
32
cos32°≈
17
20
tan32°≈
5
8
sin42°≈
27
40
cos42°≈
3
4
tan42°≈
9
10
)
20.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.
(1)求甲、乙两人每天各加工多少个这种零件?
(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?
21.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.
(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
22.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
23.问题提出:
如图,图①是一张由三个边长为1的小正方形组成的"L"形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?
问题探究:
为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.
探究一:
把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.
探究二:
把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图④,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.
探究三:
把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图⑤,在a×2的方格纸中,共可以找到      个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有      种不同的放置方法.
探究四:
把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图⑥,在a×3的方格纸中,共可以找到      个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有      种不同的放置方法.
......
问题解决:
把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)
问题拓展:
如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到      个图⑦这样的几何体.
24.已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:
(1)当t为何值时,点E在∠BAC的平分线上?
(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;
(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.
查看全部题目
【2019年山东省青岛市中考数学试卷】标签
中考试卷 最新试卷 山东试卷 青岛市试卷 2019年试卷 初中试卷 九年级试卷 数学试卷
1 2 3 4 5 6 7 8
下载高清试卷
【2019年山东省青岛市中考数学试卷】相关最新推荐试卷
2022年山东省青岛市中考数学试卷
2021年山东省青岛市中考数学试卷
2020年山东省青岛市中考数学试卷
2022年山东省枣庄市中考数学试卷
2022年山东省济宁市中考数学试卷
2022年山东省日照市中考数学试卷
2022年山东省滨州市中考数学试卷
2022年山东省泰安市中考数学试卷
2022年山东省威海市中考数学试卷
2022年山东省临沂市中考数学试卷
2022年山东省聊城市中考数学试卷
2022年山东省潍坊市中考数学试卷
2022年山东省烟台市中考数学试卷
2021年山东省滨州市中考数学试卷
2021年山东省德州市中考数学试卷
2021年山东省日照市中考数学试卷
2021年山东省潍坊市中考数学试卷
2021年山东省济南市中考数学试卷
2021年山东省淄博市中考数学试卷
2021年山东省烟台市中考数学试卷