24.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.
(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).
(2)操作:如何画出这个正方形PQMN呢?
如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.
(3)推理:证明图2中的四边形PQMN是正方形.
(4)拓展:小波把图2中的线段BN称为"波利亚线",在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求"波利亚线"BN的长(用a,h表示).
请帮助小波解决"温故"、"推理"、"拓展"中的问题.