首页
>
初中试卷
>
八年级试卷
>
八年级数学试卷
>
2022年八年级数学试卷
>
2022年湖北八年级数学试卷
>
2022年湖北孝感市八年级数学试卷
>
2022年湖北孝感市八年级数学期中试卷
【2021-2022学年湖北省孝感市孝南区八年级(下)期中数学试卷】-第3页
试卷格式:
2021-2022学年湖北省孝感市孝南区八年级(下)期中数学试卷.PDF
试卷热词:
最新试卷、2022年、湖北试卷、孝感市试卷、数学试卷、八年级下学期试卷、期中试卷、初中试卷
如何查看答案以及解析
下载试卷后,用
微信扫一扫
扫描试卷右上角二维码即可查看
【2021-2022学年湖北省孝感市孝南区八年级(下)期中数学试卷】
解析和视频讲解。
试卷题目
1.
若二次根式
√
x+3
在实数范围内有意义,则x的取值范围是( )
A
.
x≥-3
B
.
x≥3
C
.
x≤-3
D
.
x>-3
2.
下列计算中,正确的是( )
A
.
5
√
7
-2
√
7
=21
B
.
2+
√
2
=2
√
2
C
.
√
3
×
√
6
=3
√
2
D
.
√
15
÷
√
5
=3
3.
下列四组数中,是勾股数的是( )
A
.
2.5,6,6.5
B
.
3
2
,4
2
,5
2
C
.
1,
√
2
,
√
3
D
.
7,24,25
4.
下列说法中不正确的是( )
A
.
四边相等的四边形是菱形
B
.
对角线垂直的平行四边形是菱形
C
.
菱形的对角线互相垂直且相等
D
.
菱形的邻边相等
5.
如图,平行四边形ABCD中,E,F分别在边BC,AD上,添加选项中的条件后不能判定四边形AECF是平行四边形的是( )
A
.
BE=DF
B
.
AE//CF
C
.
AE=FC
D
.
AF=EC
6.
如图,点E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为( )
A
.
一定不是平行四边形
B
.
可能是轴对称图形
C
.
当AC=BD时,它是矩形
D
.
一定不是中心对称图形
7.
已知菱形的边长和一条对角线的长均为2
cm
,则菱形的面积为( )
A
.
3
cm
2
B
.
4
cm
2
C
.
√
3
cm
2
D
.
2
√
3
cm
2
8.
已知平面直角坐标系中,有两点A(a,0),B(0,b),且满足b=
√
a-3
+
√
3-a
+4,P为AB上一动点(不与A,B重合),PE⊥x轴,PF⊥y轴,垂足分别为E,F,连接EF,则EF的最小值为( )
A
.
12
5
B
.
3
C
.
4
D
.
5
9.
化简:
√
50
-
√
72
=
.
10.
如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为
.
11.
《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:△ABC中,∠ACB=90°,AC+AB=10,BC=3,则AC的长为
.
12.
√
18
与最简二次根式5
√
a+1
是同类二次根式,则a=
.
13.
如图,若一个三角形的三边长为5、12、x,则使此三角形是直角三角形的x的值是
.
14.
比较大小:2
√
6
5(选填“>”、“ =”、“ <” ).
15.
如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BCA+∠DCE=
.
16.
用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为
.(用含a,b的代数式表示)
17.
计算:
(1)
√
2
(
√
18
-
1
2
√
8
);
(2)
√
8
+(
1
4
)
-1
-(
√
5
+1)(
√
5
-1).
18.
如图,在平行四边形ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.
求证:EG=FH.
19.
已知x=
√
3
+1
2
,y=
√
3
-1
2
,求x
2
+xy+y
2
的值.
20.
如图,在4×4的网格中每个小正方形边长都是1,每个小格的顶点叫做格点,线段AB的两个端点都在格点上,以格点为顶点分别按下列要求画图.
(1)在图①中,以AB为一边画平行四边形ABCD,使其面积为6;
(2)在图②中,以AB为一边画菱形ABEF;
(3)在图③中,以AB为一边画正方形ABGH,且与图②中所画的图形不全等.
21.
已知:如图,在四边形ABCD中,∠DAB=90°,AD//BC,AD=1,AB=3,将△ABD沿直线BD翻折,点A恰好落在CD边上点A′处.
(1)求证:BC=DC;
(2)求BC的长.
22.
如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:BM=MN;
(2)若∠BAD=60°,AC平分∠BAD,AC=2,求BN长.
23.
将矩形ABCD沿DE折叠,使顶点A落在DC上的点A'处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.
(1)求证:EF=CE;
(2)如果AF=
√
2
,求AD和AB的长.
(3)结合你对(1)(2)的理解,请你猜想DF、DC和DE之间的数量关系,直接写出结论.
24.
如图1,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E.
(1)求证:AP⊥BQ;
(2)当P运动到BC中点处时(如图2),连接DE,请你判断线段DE与AD之间的关系,并说明理由;
(3)如图3,在(2)的条件下,过A点作AM⊥DE于点H,交BQ、CD于点N、M,若AB=2,求QM的长度.
查看全部题目
【2021-2022学年湖北省孝感市孝南区八年级(下)期中数学试卷】标签
期中试卷
最新试卷
湖北试卷
孝感市试卷
2022年试卷
初中试卷
八年级下学期试卷
数学试卷
1
2
3
4
5
6
下载高清试卷
【2021-2022学年湖北省孝感市孝南区八年级(下)期中数学试卷】相关最新推荐试卷
2021-2022学年湖北省黄冈市八年级(下)期中数学试卷
2022年
湖北
黄冈市
八年级下学期
数学
期中
2021-2022学年湖北省荆州市沙市区八年级(下)期中数学试卷
2022年
湖北
荆州市
八年级下学期
数学
期中
2021-2022学年湖北省襄阳市襄州区八年级(上)期中数学试卷
2022年
湖北
襄阳市
八年级上学期
数学
期中
2021-2022学年湖北省十堰市郧阳区八年级(下)期中数学试卷
2022年
湖北
十堰市
八年级下学期
数学
期中
2021-2022学年湖北省黄石市五校联考八年级(下)期中数学试卷
2022年
湖北
黄石市
八年级下学期
数学
期中
2021-2022学年湖北省武汉市汉阳区八年级(下)期中数学试卷
2022年
湖北
武汉市
八年级下学期
数学
期中
2021-2022学年湖北省武汉市江夏区八年级(上)期中数学试卷
2022年
湖北
武汉市
八年级上学期
数学
期中
2021-2022学年湖北省随州市曾都区八年级(上)期中数学试卷
2022年
湖北
随州市
八年级上学期
数学
期中
2021-2022学年湖北省随州市高新区八年级(下)期中数学试卷
2022年
湖北
随州市
八年级下学期
数学
期中
2021-2022学年湖北省黄冈市八年级(上)期中数学试卷
2022年
湖北
黄冈市
八年级上学期
数学
期中
2021-2022学年湖北省十堰市八年级(上)期中数学试卷
2022年
湖北
十堰市
八年级上学期
数学
期中
2021-2022学年湖北省黄石市四区联考八年级(上)期中数学试卷
2022年
湖北
黄石市
八年级上学期
数学
期中
2021-2022学年安徽省合肥市包河区八年级(上)期中数学试卷
2022年
安徽
合肥市
八年级上学期
数学
期中
2021-2022学年山东省菏泽市定陶区八年级(下)期中数学试卷
2022年
山东
菏泽市
八年级下学期
数学
期中
2021-2022学年山东省菏泽市牡丹区八年级(上)期中数学试卷
2022年
山东
菏泽市
八年级上学期
数学
期中
2021-2022学年山东省滨州市八年级(上)期中数学试卷
2022年
山东
滨州市
八年级上学期
数学
期中
2021-2022学年山东省聊城市东昌府区八年级(下)期中数学试卷
2022年
山东
聊城市
八年级下学期
数学
期中
2021-2022学年山东省德州市陵城区八年级(下)期中数学试卷
2022年
山东
德州市
八年级下学期
数学
期中
2021-2022学年山东省日照市开发区八年级(上)期中数学试卷
2022年
山东
日照市
八年级上学期
数学
期中
2021-2022学年山东省威海市文登区八年级(上)期中数学试卷(五四学制)
2022年
山东
威海市
八年级上学期
数学
期中