首页 > 初中试卷 > 九年级试卷 > 九年级数学试卷 > 2022年九年级数学试卷 > 2022年江苏九年级数学试卷 > 2022年江苏常州市九年级数学试卷 > 2022年江苏常州市数学中考试卷

【2022年江苏省常州市中考数学试卷】-第1页

试卷格式:2022年江苏省常州市中考数学试卷.PDF
试卷热词:最新试卷、2022年、江苏试卷、常州市试卷、数学试卷、九年级试卷、中考试卷、初中试卷
如何查看答案以及解析
下载试卷后,用微信扫一扫扫描试卷右上角二维码即可查看【2022年江苏省常州市中考数学试卷】解析和视频讲解。
试卷题目
1.2022的相反数是(  )
  • A. 2022
  • B. -2022
  • C.
    1
    2022
  • D. -
    1
    2022

2.若二次根式
x-1
有意义,则实数x的取值范围是(  )
  • A. x≥1
  • B. x>1
  • C. x≥0
  • D. x>0
3.下列图形中,为圆柱的侧面展开图的是(  )
  • A.
  • B.
  • C.
  • D.
4.如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是(  )

  • A. 3
  • B. 4
  • C. 5
  • D. 6
5.某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y与x之间的函数表达式为(  )
  • A. y=x+50
  • B. y=50x
  • C. y=
    50
    x
  • D. y=
    x
    50

6.如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是(  )
  • A. 垂线段最短
  • B. 两点确定一条直线
  • C. 过一点有且只有一条直线与已知直线垂直
  • D. 过直线外一点有且只有一条直线与已知直线平行
7.在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是(  )
  • A. (-2,1)
  • B. (-2,-1)
  • C. (-1,2)
  • D. (-1,-2)
8.某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在(  )

  • A. 区域①、②
  • B. 区域①、③
  • C. 区域①、④
  • D. 区域③、④
9.化简:
38
=      
10.计算:m4÷m2=      
11.分解因式:x2y+xy2=      
12.2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为      
13.如图,数轴上的点A、B分别表示实数a、b,则
1
a
      
1
b
(填“>”、“=”或“<”).

14.如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是      

15.如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC      断裂(填“会”或“不会”,参考数据:
3
≈1.732).

16.如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=
2
,则⊙O的半径是      

17.如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD=      

18.如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是      

19.计算:
(1)(
2
)2-(π-3)0+3-1
(2)(x+1)2-(x-1)(x+1).
20.解不等式组,并把解集在数轴上表示出来.

21.为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.
(1)本次调查的样本容量是      ,请补全条形统计图;
(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.

22.在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图象关于原点对称;④函数的图象关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.
(1)从盒子A中任意抽出1支签,抽到①的概率是    
(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.
23.如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像分别与x轴、y轴交于点A、B,与反比例函数y=
k
x
(x>0)的图像交于点C,连接OC.已知点B(0,4),△BOC的面积是2.
(1)求b、k的值;
(2)求△AOC的面积.

24.如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.
(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为      
(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.

25.第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME-14的举办年份.
(1)八进制数3746换算成十进制数是      
(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.

26.在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.
(1)正方形      “等形点”(填“存在”或“不存在”);
(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD=4
2
,OA=5,BC=12,连接AC,求AC的长;
(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求
OF
OG
的值.

27.已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
… -1 … 
… -5 -12 … 

(1)求二次函数y=ax2+bx+3的表达式;
(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当-1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=      ,实数k的取值范围是      
(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.
28.现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.
(1)沿AC、BC剪下△ABC,则△ABC是      三角形(填“锐角”、“直角”或“钝角”);
(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);
(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.

查看全部题目
【2022年江苏省常州市中考数学试卷】标签
中考试卷 最新试卷 江苏试卷 常州市试卷 2022年试卷 初中试卷 九年级试卷 数学试卷
1 2 3 4 5 6 7 8
下载高清试卷
【2022年江苏省常州市中考数学试卷】相关最新推荐试卷
2022年江苏省南通市中考数学试卷
2022年江苏省盐城市中考数学试卷
2022年江苏省连云港市中考数学试卷
2022年江苏省扬州市中考数学试卷
2022年江苏省苏州市中考数学试卷
2022年江苏省宿迁市中考数学试卷
2022年江苏省无锡市中考数学试卷
2022年江苏省泰州市中考数学试卷
2022年青海省西宁市城区中考数学试卷
2022年青海省中考数学试卷
2022年甘肃中考数学试卷(白银市、天水市、武威市、张掖市、平凉市、酒泉市、庆阳市、定西市、陇南市、临夏州、甘南州、金昌市、嘉峪关市)
2022年甘肃省兰州市中考数学试卷
2022年陕西省中考数学试卷
2022年西藏中考数学试卷
2022年云南省中考数学试卷
2022年贵州省毕节市中考数学试卷
2022年贵州省黔东南州中考数学试卷
2022年贵州省铜仁市中考数学试卷
2022年贵州省黔西南州中考数学试卷
2022年四川省绵阳市中考数学试卷